Tez Türü | Yüksek Lisans |
Ülke | Türkiye |
Kurum/Üniversite | Kafkas Üniversitesi |
Enstitü | Fen Bilimleri Enstitüsü |
Anabilimdalı | Matematik Ana Bilim Dalı |
Tez Onay Yılı | 2015 |
Öğrenci Adı ve Soyadı | Özgür ERDAĞ |
Tez Danışmanı | DOÇ. DR. ÖMÜR DEVECİ |
Türkçe Özet | Bu tez çalışmasında Bezout matrisleri yardımıyla devirli grupların elde edilmesi ve elde edilen devirli grupların mertebelerinin belirlenmesi üzerinde duruldu.Çalışmanın 2. bölümünde, Bezout matrisleri ve üzerinde çalışılacak matematiksel yapılarla ilgili temel kavramlar tanıtıldı. Buna ek olarak 2. ve 3. bölümlerde kuramsal olarak tezdeki bulgulara esas teşkil etmesi bakımından çeşitli yollardan elde edilen bazı özel tanımlı matrisler yardımıyla üretilen devirli gruplar ve indirgemeli diziler hakkında geniş bir şekilde bilgi verildi.Çalışmanın 4. bölümünde ise, k-basamak Fibonacci, genelleştirilmiş k-mertebeden Pell ve genelleştirilmiş k-mertebeden Jacobsthal dizilerinin karakteristik polinomları kullanılarak Bezout matrisleri tanımlandı. Tanımlanan Bezout matrislerinin m-modülüne göre indirgenmeleri suretiyle bu matrisler üreteç olarak seçilerek devirli gruplar elde edildi. Son olarak farklı m değerleri için devirli grupların mertebelerinin belirlenmesi noktasında çeşitli formüller verildi. |
İlgilizce Özet | In this thesis study, we focused on obtaining the cyclic groups by the aid of the Bezout matrices and determing the orders of the defined cyclic groups.In the 2nd section of study, the basic definition about the Bezout matrices and mathematical structures that to be studied on have been introduced. Additionally, at 2nd and 3rd sections, there have been broad information about the cyclic group produced with the aid of the obtained some custom-defined matrices in various ways and the recurrence sequences in terms of being essential in the finding of this thesis as theoretical.In the 4th section of study, the Bezout matrices have been defined by using characteristic polinomials of the k-step Fibonacci, the Generalized order-k Pell and the Generalized order-k Jacobsthal sequences. The cyclic groups have been obtained from the defined Bezout matrices such that these matrices are chosen as generators by reducing their elements according to modulo m.Finally, the various formulas have been given in terms of determining orders of the cyclic groups for the different m values. |