img
img
On the Solutions of Quaternion Difference Equations in Terms of Generalized Fibonacci-Type Numbers     
Yazarlar (1)
Doç. Dr. Kübra GÜL Doç. Dr. Kübra GÜL
Kafkas Üniversitesi, Türkiye
Devamını Göster
Özet
The aim of this paper is to investigate the solution of the following difference equation zn+1=(pn)−1,n∈N0,N0=N∪0 where pn=a+bzn+czn−1zn with the parameters a, b, c and the initial values z−1,z0 are nonzero quaternions such that their solutions are associated with generalized Fibonacci-type numbers. Furthermore, we deal with the solutions to the following symmetric system of difference equations given by zn+1=(qn)−1,wn+1=(rn)−1,n∈N0 where qn= a+bwn+czn−1wn and rn=a+bzn+cwn−1zn. We provide the solution to the third-order quaternion linear difference equation in terms of the zeros of the characteristic polynomial associated with the linear difference equation.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Symmetry
Dergi ISSN 2073-8994 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 10-2022
Cilt No 14
Sayı 10
Doi Numarası 10.3390/sym14102190
Makale Linki http://dx.doi.org/10.3390/sym14102190