| Yazarlar (1) |
Doç. Dr. Kübra GÜL
Kafkas Üniversitesi, Türkiye |
| Özet |
| The aim of this paper is to investigate the solution of the following difference equation zn+1=(pn)−1,n∈N0,N0=N∪0 where pn=a+bzn+czn−1zn with the parameters a, b, c and the initial values z−1,z0 are nonzero quaternions such that their solutions are associated with generalized Fibonacci-type numbers. Furthermore, we deal with the solutions to the following symmetric system of difference equations given by zn+1=(qn)−1,wn+1=(rn)−1,n∈N0 where qn= a+bwn+czn−1wn and rn=a+bzn+cwn−1zn. We provide the solution to the third-order quaternion linear difference equation in terms of the zeros of the characteristic polynomial associated with the linear difference equation. |
| Anahtar Kelimeler |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | Symmetry |
| Dergi ISSN | 2073-8994 Wos Dergi Scopus Dergi |
| Dergi Tarandığı Indeksler | SCI-Expanded |
| Dergi Grubu | Q2 |
| Makale Dili | İngilizce |
| Basım Tarihi | 10-2022 |
| Cilt No | 14 |
| Sayı | 10 |
| Doi Numarası | 10.3390/sym14102190 |
| Makale Linki | http://dx.doi.org/10.3390/sym14102190 |