Yazarlar (1) |
![]() Kafkas Üniversitesi, Türkiye |
Özet |
A quaternion is defined [3] by q= a0+ a1i+ a2j+ a3k, where a0, a1, a2, a3 are real numbers and i, j, k are quaternionic units. Several authors studied on different quaternions and their generalizations, some of which can be found in [1, 2, 4]. A new set of numbers called hybrid numbers are defined in [5] as a generalization of dual numbers, complex numbers and hyperbolic numbers. Since then, the hybrid numbers have been a topic of interest, and some new classes of quaternions and sequences have been studied in [1, 6, 7]. Inspired by these works, we define a new type of quaternions called Perrin hybrid quaternions. We give recurrence relations, Binet-like formulas, generating functions, exponential generating functions and some properties for these quaternions. Then we also define a associate matrix for these quaternions. By the means of this matrix, we also give several identities of these quaternions. We … |
Anahtar Kelimeler |
Bildiri Türü | Tebliğ/Bildiri |
Bildiri Alt Türü | Özet Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum) |
Bildiri Niteliği | Alanında Hakemli Uluslararası Kongre/Sempozyum |
Bildiri Dili | İngilizce |
Kongre Adı | 4st INTERNATIONAL CONFERENCE ON PURE AND APPLIED MATHEMATİCS |
Kongre Tarihi | 22-06-2022 / 23-06-2022 |
Basıldığı Ülke | Türkiye |
Basıldığı Şehir | Van |