img
img
SIAMESE NEURAL NETWORKS FOR PANDEMIC DETECTION USING CHEST RADIOGRAPHS   
Yazarlar (6)
Vanita Jain
Apoorv Jain
Vinayak Gark
Achin Jain
Dr. Öğr. Üyesi Merve DEMİRCİ Dr. Öğr. Üyesi Merve DEMİRCİ
Kafkas Üniversitesi, Türkiye
Müslüm Cengiz Taplamacıoğlu
Gazi Üniversitesi, Türkiye
Devamını Göster
Özet
The recent developments in the field of deep learning have enabled the efficient diagnosis of medical imaging for determining a broad set of diseases. To reduce the spread and impact of the pandemic (COVID virus), machine learning techniques can be used to diagnose and predict the disease using chest X-ray images. In this research, we present an approach using Siamese Convolutional Neural Network (SCNN) to classify chest x-ray images into four classes, namely pandemic, Severe-COVID, Pneumonia and Normal. We present a comparative study between the performance of our Siamese network and other pre-trained CNN architectures ie VGG-16 and ResNet50 in this research. The model performance is tested by merging two publicly available datasets: COVID-Chest-Xray dataset and Chest X-Ray Images (Pneumonia). We achieved an accuracy of 98% on Siamese ResNet50 which gives the best performance in contrast to 95% on VGG-16, 93% on ResNet50 and 96% on Siamese VGG-16.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SCOPUS dergilerinde yayınlanan tam makale
Dergi Adı International Journal on “Technical and Physical Problems of Engineering” (IJTPE)
Dergi ISSN 0051-1402
Dergi Tarandığı Indeksler Scopus
Makale Dili İngilizce
Basım Tarihi 06-2022
Cilt No 14
Sayı 2
Sayfalar 104 / 110
Makale Linki http://www.iotpe.com/IJTPE/IJTPE-2022/IJTPE-Issue51-Vol14-No2-Jun2022/13-IJTPE-Issue51-Vol14-No2-Jun2022-pp104-110.pdf
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 5

Paylaş