img
img
Comparative Dissolved Gas Analysis with Machine Learning and Traditional Methods    
Yazarlar (3)
Dr. Öğr. Üyesi Merve DEMİRCİ Dr. Öğr. Üyesi Merve DEMİRCİ
Kafkas Üniversitesi, Türkiye
Haluk Gözde
Türkiye
Müslüm Cengiz Taplamacıoğlu
Gazi Üniversitesi, Türkiye
Devamını Göster
Özet
Power transformers are one of the vital equipment for power systems. Therefore, in case of outage of the service, the effects on the system are fatal. The fault diagnosis is of great importance. In this study, interpretation methods of dissolved gas analysis used in diagnosis of power transformers are examined. In the MATLAB GUI, a user interface has been created for traditional fault diagnosis. Fault diagnosis is made and the shortcomings of traditional methods have been shown. Support Vector Machine, K-Nearest Neighbors and Decision Tree algorithms are used for diagnosis of machine learning methods. Between these methods, the Python programming language is used for fault diagnosis and fault classification is made to the IEC TC 10 database. Confusion matrices and classification performance measurements of machine learning methods are obtained. The classification accuracy of the methods has been …
Anahtar Kelimeler
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Alanında Hakemli Uluslararası Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)
Kongre Tarihi 11-06-2021 / 13-06-2021
Basıldığı Ülke Türkiye
Basıldığı Şehir Ankara
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 18
Comparative Dissolved Gas Analysis with Machine Learning and Traditional Methods

Paylaş