img
img
Dempster Shafer Evidence Theory Application for Fault Diagnosis of Power Transformers     
Yazarlar (5)
Dr. Öğr. Üyesi Merve DEMİRCİ Dr. Öğr. Üyesi Merve DEMİRCİ
Kafkas Üniversitesi, Türkiye
Mustafa Saka
Türkiye
Haluk Gözde
Türkiye
Mahir Dursun
Türkiye
Müslüm Cengiz Taplamacıoğlu
Gazi Üniversitesi, Türkiye
Devamını Göster
Özet
In this paper, advance diagnosis in power transformers, which is one of the most equipment of power systems. Real gas data from Dissolve Gas Analysis has been used for fault diagnosis. Multi-Layer Perceptron Neural Network, Support Vector Machine and Naive Bayes classifiers are used for fault diagnosis. The data set is included in a preprocessing step for the operation of statistical learning algorithms and also has been used as a training and test data set for classification algorithms. The results from the classifiers are compared. Then, the classifier results are combined with Dempster Shafer Evidence Theory, one of the most effective Data Fusion techniques. For this, mass functions for Data Fusion are obtained from the outputs of the classifiers, and the fusion process is performed using the Dempster Shafer Combination Rule. It is seen that the fusion method has better diagnostic accuracy compared to …
Anahtar Kelimeler
SVM | Naive Bayes | MLFNN | data fusion | dempster shafer evidence theory | fault diagnosis
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Web of Science Kapsamındaki Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı 2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)
Kongre Tarihi 29-03-2022 / 31-03-2022
Basıldığı Ülke Türkiye
Basıldığı Şehir Alanya