img
Radius Problems for Functions Containing Derivatives of Bessel Functions      
Yazarlar
Dr. Öğr. Üyesi Sercan KAZIMOĞLU Dr. Öğr. Üyesi Sercan KAZIMOĞLU
Kafkas Üniversitesi, Türkiye
Prof. Dr. Erhan DENİZ Prof. Dr. Erhan DENİZ
Kafkas Üniversitesi, Türkiye
Özet
In this paper our aim is to find the radii of starlikeness and convexity for three different kinds of normalizations of the function Nν(z)=az2Jν″(z)+bzJν′(z)+cJν(z), where Jν(z) is the Bessel function of the first kind of order ν. The key tools in the proof of our main results are the Mittag-Leffler expansion for the function Nν(z) and properties of real zeros of it. In addition, by using the Euler-Rayleigh inequalities we obtain some tight lower and upper bounds for the radii of starlikeness and convexity of order zero for the normalized function Nν(z). Finally, we evaluate certain multiple sums of the zeros for the function Nν(z).
Anahtar Kelimeler
Convex functions | Normalized Bessel functions of the fist kind | Radius | Starlike functions | Zeros of Bessel function derivatives
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Computational Methods and Function Theory
Dergi ISSN 1617-9447
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 09-2023
Cilt No 23
Sayı 3
Sayfalar 421 / 446
Doi Numarası 10.1007/s40315-022-00455-3
Makale Linki http://dx.doi.org/10.1007/s40315-022-00455-3