img
Geometric Properties of Generalized Integral Operators Related to The Miller–Ross Function       
Yazarlar
Dr. Öğr. Üyesi Sercan KAZIMOĞLU Dr. Öğr. Üyesi Sercan KAZIMOĞLU
Kafkas Üniversitesi, Türkiye
Prof. Dr. Erhan DENİZ Prof. Dr. Erhan DENİZ
Kafkas Üniversitesi, Türkiye
Luminita-Loana Cotirla
Özet
It is very well-known that the special functions and integral operators play a vital role in the research of applied and mathematical sciences. In this paper, our aim is to present sufficient conditions for the families of integral operators containing the normalized forms of the Miller–Ross functions such that they can be univalent in the open unit disk. Moreover, we find the convexity order of these operators. In proof of results, we use some differential inequalities related with Miller–Ross functions and well-known lemmas. The various results, which are established in this paper, are presumably new, and their importance is illustrated by several interesting consequences and examples.
Anahtar Kelimeler
analytic functions | convexity | integral operators | Miller–Ross functions | special functions | univalence | univalent functions
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı MDPI Axioms
Dergi ISSN 2075-1680
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 06-2023
Cilt No 12
Sayı 6
Sayfalar 1 / 18
Doi Numarası 10.3390/axioms12060563
Makale Linki http://dx.doi.org/10.3390/axioms12060563