img
Radii of Starlikeness and Convexity of the Derivatives of Bessel Function      
Yazarlar
Prof. Dr. Erhan DENİZ Prof. Dr. Erhan DENİZ
Kafkas Üniversitesi, Türkiye
Dr. Öğr. Üyesi Sercan KAZIMOĞLU Dr. Öğr. Üyesi Sercan KAZIMOĞLU
Kafkas Üniversitesi, Türkiye
Murat Çağlar
Erzurum Teknik Üniversitesi, Türkiye
Özet
We find the radii of starlikeness and convexity of the derivatives of Bessel function for three different kinds of normalization. The key tools in the proof of our main results are the Mittag-Leffler expansion for the nth derivative of the Bessel function and the properties of its real zeros. In addition, by using the Euler–Rayleigh inequalities we obtain some tight lower and upper bounds for the radii of starlikeness and convexity of order zero for the normalized nth derivative of the Bessel function. As the main results of our investigations, we can mention natural extensions of some known results for the classical Bessel functions of the first kind.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Ukrainian Mathematical Journal
Dergi ISSN 0041-5995
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 04-2022
Cilt No 73
Sayı 11
Sayfalar 1686 / 1711
Doi Numarası 10.1007/s11253-022-02024-2
Makale Linki https://doi.org/10.1007/s11253-022-02024-2