| Yazarlar (4) |
|
Université Djillali Liabes De Sidi Bel Abbes, Türkiye |
|
Université Ibn-Khaldoun Tiaret, Türkiye |
|
Universidad De Murcia, Türkiye |
Doç. Dr. Hatıra GÜNERHAN
Kafkas Üniversitesi, Türkiye |
| Özet |
| In this manuscript, the existence, uniqueness, and stability of solutions to the terminal value problem of Riemann-Liouville fractional equations are established in the variable exponent Lebesgue spaces Lp(.). We convert the variable exponent Lebesgue spaces Lp(.) to the Lebesgue spaces using the generalized intervals and piece-wise constant function. Further, the Banach contraction principle is used, the Ulam-Hyers-stability is examined, and finally, we construct an example. |
| Anahtar Kelimeler |
| fixed point theorem | fractional differential equations | terminal value problem | Ulam-Hyers stability | variable exponent Lebesgue spaces |
| Makale Türü | Özgün Makale |
| Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale |
| Dergi Adı | Mathematical Methods in the Applied Sciences |
| Dergi ISSN | 0170-4214 Wos Dergi Scopus Dergi |
| Dergi Tarandığı Indeksler | SCI-Expanded |
| Dergi Grubu | Q1 |
| Makale Dili | İngilizce |
| Basım Tarihi | 01-2023 |
| Cilt No | 48 |
| Sayı | 2023 |
| Sayfalar | 1 / 19 |
| Doi Numarası | 10.1002/mma.8964 |
| Makale Linki | https://onlinelibrary.wiley.com/doi/10.1002/mma.8964 |