img
Terminal value problem for Riemann‐Liouville fractional differential equation in the variable exponent Lebesgue space Lp(.)$$ {L}^{p(.)}      
Yazarlar
Ahmed Refice
Türkiye
Mohammed Said Souid
Türkiye
Juan L.G. Guirao
Türkiye
Doç. Dr. Hatıra GÜNERHAN Doç. Dr. Hatıra GÜNERHAN
Türkiye
Özet
In this manuscript, the existence, uniqueness, and stability of solutions to the terminal value problem of Riemann-Liouville fractional equations are established in the variable exponent Lebesgue spaces Lp(.). We convert the variable exponent Lebesgue spaces Lp(.) to the Lebesgue spaces using the generalized intervals and piece-wise constant function. Further, the Banach contraction principle is used, the Ulam-Hyers-stability is examined, and finally, we construct an example.
Anahtar Kelimeler
fixed point theorem | fractional differential equations | terminal value problem | Ulam-Hyers stability | variable exponent Lebesgue spaces
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Mathematical Methods in the Applied Sciences
Dergi ISSN 0170-4214
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 01-2023
Sayı 2023
Sayfalar 1 / 19
Doi Numarası 10.1002/mma.8964
Makale Linki https://onlinelibrary.wiley.com/doi/10.1002/mma.8964