Terminal value problem for Riemann‐Liouville fractional differential equation in the variable exponent Lebesgue space Lp(.)$$ {L}^{p(.)}       
Yazarlar (4)
Ahmed Refice
Université Djillali Liabes De Sidi Bel Abbes, Cezayir
Mohammed Said Souid
Université Ibn-Khaldoun Tiaret, Cezayir
Juan L.G. Guirao
Universidad De Murcia, İspanya
Doç. Dr. Hatıra GÜNERHAN Kafkas Üniversitesi, Türkiye
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Mathematical Methods in the Applied Sciences
Dergi ISSN 0170-4214 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 01-2023
Cilt No 48
Sayı 7
Sayfalar 7316 / 7334
DOI Numarası 10.1002/mma.8964
Makale Linki https://onlinelibrary.wiley.com/doi/10.1002/mma.8964
Özet
In this manuscript, the existence, uniqueness, and stability of solutions to the terminal value problem of Riemann-Liouville fractional equations are established in the variable exponent Lebesgue spaces Lp(.). We convert the variable exponent Lebesgue spaces Lp(.) to the Lebesgue spaces using the generalized intervals and piece-wise constant function. Further, the Banach contraction principle is used, the Ulam-Hyers-stability is examined, and finally, we construct an example.
Anahtar Kelimeler
fixed point theorem | fractional differential equations | terminal value problem | Ulam-Hyers stability | variable exponent Lebesgue spaces