Yazarlar |
Ahmed Refice
Türkiye |
Mohammed Said Souid
Türkiye |
Juan L.G. Guirao
Türkiye |
Hatıra GÜNERHAN
Türkiye |
Özet |
In this manuscript, the existence, uniqueness, and stability of solutions to the terminal value problem of Riemann-Liouville fractional equations are established in the variable exponent Lebesgue spaces Lp(.). We convert the variable exponent Lebesgue spaces Lp(.) to the Lebesgue spaces using the generalized intervals and piece-wise constant function. Further, the Banach contraction principle is used, the Ulam-Hyers-stability is examined, and finally, we construct an example. |
Anahtar Kelimeler |
fixed point theorem | fractional differential equations | terminal value problem | Ulam-Hyers stability | variable exponent Lebesgue spaces |
Makale Türü | Özgün Makale |
Makale Alt Türü | SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale |
Dergi Adı | Mathematical Methods in the Applied Sciences |
Dergi ISSN | 0170-4214 |
Dergi Tarandığı Indeksler | SCI-Expanded |
Dergi Grubu | Q1 |
Makale Dili | İngilizce |
Basım Tarihi | 01-2023 |
Sayı | 2023 |
Sayfalar | 1 / 19 |
Doi Numarası | 10.1002/mma.8964 |
Makale Linki | https://onlinelibrary.wiley.com/doi/10.1002/mma.8964 |