img
New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method      
Yazarlar
Mohammed K. A. Kaabar
Türkiye
Francisco Martínez
Türkiye
José Francisco Gomez-Aguila
Türkiye
Behzad Ghanbarı
Türkiye
Melike Kaplan
Kastamonu Üniversitesi, Türkiye
 Hatıra GÜNERHAN Hatıra GÜNERHAN
Kafkas Üniversitesi, Türkiye
Özet
In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.
Anahtar Kelimeler
Caputo fractional derivative | conformable derivative | double Laplace transform | nonlinear fractional Schrödinger equation
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı Mathematical Methods in the Applied Sciences
Dergi ISSN 0170-4214
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili Türkçe
Basım Tarihi 03-2021
Cilt No 2021
Sayı 14
Sayfalar 1 / 19
Doi Numarası 10.1002/mma.7476
Makale Linki http://dx.doi.org/10.1002/mma.7476