img
img
Precision Risk Stratification in Atrial Fibrillation: Evaluating Machine Learning Models for Bleeding Prediction and Clinical Integration   
Yazarlar (4)
Onur Akgün
Türkiye
Murat Akdoğan
Türkiye
Arş. Gör. Ahmet ARDAHANLI Arş. Gör. Ahmet ARDAHANLI
Kafkas Üniversitesi, Türkiye
İsa Ardahanlı
Bilecik Şeyh Edebali Üniversitesi, Türkiye
Devamını Göster
Özet
To the Editor, We commend Chaudhary et al. 1 for their insightful study,“Machine Learning Predicts Bleeding Risk in Atrial Fibrillation Patients on Direct Oral Anticoagulant,” published in The American Journal of Cardiology. Their work rigorously compares machine learning algorithms—random forest and XGBoost—to conventional bleeding risk scores (HASBLED, ORBIT, ATRIA) in predicting major bleeding events among atrial fibrillation (AF) patients receiving direct oral anticoagulants (DOACs). The authors report superior discriminative performance of machine learning models (AUC: 0.76) over traditional scores (AUC: 0.57 for HAS-BLED), underscoring machine learning’s potential to refine personalized risk stratification. Notably, their SHAP (SHapley Additive exPlanations) analysis identified novel predictors, such as body mass index, lipid profiles, and insurance type, which may elucidate previously …
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı The American Journal of Cardiology
Dergi ISSN 0002-9149 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q3
Makale Dili Türkçe
Basım Tarihi 07-2025
Cilt No 246
Doi Numarası 10.1016/j.amjcard.2025.03.015
Makale Linki https://doi.org/10.1016/j.amjcard.2025.03.015