img
img
Cardiovascular Topic  
Yazarlar (6)
Erhan Arıkan
Bilecik Şeyh Edebali Üniversitesi, Türkiye
Faik Özel
Bilecik Şeyh Edebali Üniversitesi, Türkiye
Ramazan Aslan
Bilecik Şeyh Edebali Üniversitesi, Türkiye
Murat Özmen
Atatürk Üniversitesi, Türkiye
Arş. Gör. Ahmet ARDAHANLI Arş. Gör. Ahmet ARDAHANLI
Kafkas Üniversitesi, Türkiye
Isa Ardahanlı
Bilecik Şeyh Edebali Üniversitesi, Türkiye
Devamını Göster
Özet
Introduction: Early detection of subclinical left ventricular (LV) dysfunction in hypertensive patients presenting to the emergency department (ED) is of critical importance. We aimed to evaluate the performance of artificial intelligence (AI)-assisted Poincaré plot analysis of electrocardiogram (ECGs) to identify subclinical LV dysfunction rapidly. Methods: 60 hypertensive patients and 55 normotensive controls were prospectively enrolled in the ED. After stabilisation, all participants underwent 5-minute ECG recordings. Heart rate variability (HRV) measurements were calculated, and Poincaré plots were generated. A convolutional neural network (CNN) model was trained to classify the Poincaré plot images. Transthoracic echocardiography was performed within 24 hours to measure left ventricular ejection fraction (LVEF) and
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü Uluslararası alan indekslerindeki dergilerde yayınlanan tam makale
Dergi Adı Cardiovasc J Afr
Dergi Tarandığı Indeksler
Makale Dili İngilizce
Basım Tarihi 01-2025
Cilt No 36
Sayfalar 491 / 498
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları

Paylaş