img
img
Machine learning–guided scanning electrochemical microscopy on a calpastatin-modified ITO biosensor for label-free detection of Schistosoma haematobium eggs  
Yazarlar (4)
Hilal Bedir
Kafkas Üniversitesi, Türkiye
Dr. Öğr. Üyesi Mehmet EZER Dr. Öğr. Üyesi Mehmet EZER
Kafkas Üniversitesi, Türkiye
Mükremin Özkan Arslan
Kafkas Üniversitesi, Türkiye
Doç. Dr. Zihni Onur UYGUN Doç. Dr. Zihni Onur UYGUN
Kafkas Üniversitesi, Türkiye
Devamını Göster
Özet
In this study, a calpastatin-modified indium–tin oxide (ITO) electrochemical biosensor coupled with machine-learning–guided scanning electrochemical microscopy (SECM) operated in feedback mode. Electrochemical impedance spectroscopy (EIS) provided quantitative calibration via charge-transfer resistance (Rct), while SECM produced spatial maps to localize individual eggs. A lightweight classifier analyzed survey tiles online and triggered event-zoom scans around putative targets. Analytical performance was evaluated in urine, including selectivity against common urinary interferents. Egg binding leads to increase in Rct with linear calibration from 2 to 400 eggs per 0.2 cm2 (log-linear R2 ≈ 0.993). LOD 1 egg and LOQ 2 eggs per 0.2 cm2, with repeatability CV typically 2–5 % across five replicates and close overlap of independent calibration runs (high reproducibility). Integrating a selective calpastatin–ITO interface with ML-guided feedback-mode SECM enables rapid, label-free detection and localization of Schistosoma haematobium eggs at diagnostically relevant low counts, with strong selectivity and practical.
Anahtar Kelimeler
Electrochemical biosensor | Impedance spectroscopy | Machine learning | Schistosoma haematobium | Schistosomiasis | SECM
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Microchemical Journal
Dergi ISSN 0026-265X Wos Dergi Scopus Dergi
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 01-2026
Cilt No 220
Sayı 1
DOI Numarası 10.1016/j.microc.2025.116647