img
Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials   
Yazarlar
Muhammet Kamali
Kırgızistan-Türkiye Manas Üniversitesi, Türkiye
Murat Çağlar
Kafkas Üniversitesi, Türkiye
Prof. Dr. Erhan DENİZ Prof. Dr. Erhan DENİZ
Kafkas Üniversitesi, Türkiye
Mirzaolim Turabaev
Türkiye
Özet
In this paper,we define a class of analytic functions F(β,λ) (H, α, δ, µ), satisfying the following subordinate
condition associated with Chebyshev polynomials 

α
[
zG′
(z)
G (z)

+ (1 − α)
[
zG′
(z)
G (z)
]µ [
1 + zG′′ (z)
G

(z)
]1−µ



≺ H (z, t),
where G (z) = λβz2
f
′′ (z) + (λ − β) zf′
(z) + (1 − λ + β) f (z), 0 ≤ α ≤ 1, 1 ≤ δ ≤ 2, 0 ≤ µ ≤ 1, 0 ≤ β ≤ λ ≤ 1 and
t ∈
(
1
2
, 1
]
. We obtain initial coefficients |a2| and |a3| for this subclass by means of Chebyshev polynomials expansions
of analytic functions in D. Furthermore, we solve Fekete-Szegö problem for functions in this subclass.We also provide
relevant connections of our results with those considered in earlier investigations. The results presented in this paper
improve the earlier investigations.
Anahtar Kelimeler
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı TURKISH JOURNAL OF MATHEMATICS
Dergi ISSN 1303-6149
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q3
Makale Dili Türkçe
Basım Tarihi 01-2021
Cilt No 45
Sayfalar 1195 / 1208
Doi Numarası 10.3906/mat-2101-20
Makale Linki http://dx.doi.org/10.3906/mat-2101-20