img
img
A Deep Learning Model Based on Convolutional Neural Networks for Classification of Magnetic Resonance Prostate Images      
Yazarlar (3)
Dr. Öğr. Üyesi Fatih UYSAL Dr. Öğr. Üyesi Fatih UYSAL
Kafkas Üniversitesi, Türkiye
Fırat Hardalaç
Gazi Üniversitesi, Türkiye
Mustafa Koç
Fırat Üniversitesi, Türkiye
Devamını Göster
Özet
When looking at prostate cancer, it is seen that it is one of the very common types of cancer in men. In literature review, it is understood that there are a lot of studies for the treatment and diagnosis of this type of cancer with various image processing methods on prostate images. On prostate biopsy, secondary haemorrhage areas of T2-weighted magnetic resonance (MR) in prostate images can cause false diagnoses. T1-weighted MR prostate images help diagnose these cases. In such cases, in order to prevent misdiagnosis; A new classification procedure for MR prostate images with convolutional neural networks (CNN) was performed. As a result of this process, a new deep learning model based on CNN which can classify T1-weighted and T2-weighted MR prostate images has been developed.
Anahtar Kelimeler
Convolutional neural networks | Deep learning | Magnetic resonance prostate images | Image classification | Artificial intelligence
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayımlanan Tebliğ (Uluslararası Kongre/Sempozyum)
Bildiri Niteliği Web of Science Kapsamındaki Kongre/Sempozyum
Bildiri Dili İngilizce
Kongre Adı International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2019)
Kongre Tarihi 20-04-2019 / 22-04-2019
Basıldığı Ülke Türkiye
Basıldığı Şehir Antalya