Classification of T1 and T2 Weighted Magnetic Resonance Prostate Images Using Convolutional Neural Networks     
Yazarlar (3)
Dr. Öğr. Üyesi Fatih UYSAL Kafkas Üniversitesi, Türkiye
Fırat Hardalaç
Gazi Üniversitesi, Türkiye
Mustafa Koç
Firat Üniversitesi, Türkiye
Bildiri Türü Tebliğ/Bildiri
Bildiri Alt Türü Tam Metin Olarak Yayınlanan Tebliğ (Ulusal Kongre/Sempozyum)
Bildiri Niteliği Web of Science Kapsamındaki Kongre/Sempozyum
DOI Numarası 10.1109/TIPTEKNO.2018.8596792
Bildiri Dili Türkçe
Kongre Adı Tıp Teknolojileri Ulusal Kongresi, TIPTEKNO’18
Kongre Tarihi 08-11-2018 / 10-11-2018
Basıldığı Ülke Kuzey Kıbrıs Türk Cumhuriyeti
Basıldığı Şehir Gazi Magosa
Bildiri Linki https://ieeexplore.ieee.org/abstract/document/8596792
Özet
Prostate cancer is a type of cancer that is very common in men. Literature review, it has been observed that there are many studies conducted on this prostate image using various image processing methods for cancer diagnosis and treatment. Secondary hemorrhage sites in prostate biopsy may cause misdiagnosis in T2-weighted magnetic resonance (MR) prostate images, in terms of tumor. In these cases, T1-weighted MR imaging of the prostate is helpful in diagnosing. In such situations, it may be helpful to prevent misdiagnosis and to help diagnosis; In this study, one deep convolutional neural network learning algorithms (CNN) using T1 and T2-weighted MR image classification process of the prostate were performed. As a result of this, an CNN model was developed that can classify MR prostate images.
Anahtar Kelimeler
convolutional neural networks | deep learning | image classification | magnetic resonance prostate images