img
Application of real valued genetic algorithm on prediction of higher heating values of various lignocellulosic materials using lignin and extractive contents      
Yazarlar
 Fikret AKDENİZ Fikret AKDENİZ
Kafkas Üniversitesi, Türkiye
Metin Biçil
Türkiye
Yusuf Karadede
Kafkas Üniversitesi, Türkiye
 Füreya Elif ÖZTÜRKKAN Füreya Elif ÖZTÜRKKAN
Kafkas Üniversitesi, Türkiye
Gültekin Özdemir
Süleyman Demirel Üniversitesi, Türkiye
Özet
The higher heating values (HHVs) of 11 non-wood lignocellulosic materials from Turkey were measured experimentally and calculated incorporating various theoretical models with the values of both lignin and extractive contents. Multiple linear regression (MLR) and real valued genetic algorithm (RVGA) were used to derive the theoretical models. A non-linear RVGA6 model was determined as the best non-linear model considering the experimental results with a regression coefficient of 92% coefficient of determination (R2), 0.301 sum of squared errors (SSE), 0.301 mean squared errors (MSE), 0.548 root mean squared errors (RMSE) and 0.0187 mean absolute percentage error (MAPE) and is proposed as a better alternative for theoretical HHV calculations to the multiple linear modellings such as MLR and RVGA1.
Anahtar Kelimeler
Lignocellulosic materials | Higher heating value | Data fitting | Regression | Genetic algorithm
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayımlanan tam makale
Dergi Adı ENERGY
Dergi ISSN 0360-5442
Dergi Tarandığı Indeksler SCI
Makale Dili İngilizce
Basım Tarihi 10-2018
Cilt No 160
Sayı 1
Sayfalar 1047 / 1054
Doi Numarası 10.1016/j.energy.2018.07.053
Makale Linki https://linkinghub.elsevier.com/retrieve/pii/S0360544218313501